PS 本站不保证资源的完整性,不对其真实性负责。请自行确认是否符合个人需求。如有介意,请勿获取。
- 第1章课程介绍【赠送相关电子书+随堂代码】 【3 节 | 20分钟】
- 图文:1-1 课前必读(不看会错过一个亿)
- 视频:1-3 数据分析概述 (11:25)
- 第2章数据获取 【4 节 | 18分钟】
- 视频:2-1 数据仓库 (05:06)
- 视频:2-2 监测与抓取 (02:53)
- 视频:2-3 填写、埋点、日志、计算 (02:25)
- 视频:2-4 数据学习网站 (07:01)
- 第3章单因子探索分析与数据可视化 【27 节 | 124分钟】
- 视频:3-1 数据案例介绍 (04:27)
- 视频:3-2 集中趋势,离中趋势 (05:58)
- 视频:3-3 数据分布–偏态与峰度 (03:54)
- 视频:3-4 抽样理论 (06:06)
- 视频:3-5 编码实现(基于python2.7) (12:51)
- 视频:3-6 数据分类 (02:37)
- 视频:3-7 异常值分析 (03:33)
- 视频:3-8 对比分析 (05:38)
- 视频:3-9 结构分析 (01:39)
- 视频:3-10 分布分析 (05:59)
- 视频:3-11 Satisfaction Level的分析 (09:32)
- 视频:3-12 LastEvaluation的分析 (07:39)
- 视频:3-13 NumberProject的分析 (03:42)
- 视频:3-14 AverageMonthlyHours的分析 (05:40)
- 视频:3-15 TimeSpendCompany的分析 (00:51)
- 视频:3-16 WorkAccident的分析 (00:49)
- 视频:3-17 Left的分析 (00:23)
- 视频:3-18 PromotionLast5Years的分析 (00:30)
- 视频:3-19 Salary的分析 (01:37)
- 视频:3-20 Department的分析 (01:16)
- 视频:3-21 简单对比分析操作 (07:08)
- 视频:3-22 可视化-柱状图 (15:42)
- 视频:3-23 可视化-直方图 (04:27)
- 视频:3-24 可视化-箱线图 (02:21)
- 视频:3-25 可视化-折线图 (02:21)
- 视频:3-26 可视化-饼图 (03:09)
- 视频:3-27 本章小结 (03:38)
- 第4章多因子探索分析 【12 节 | 100分钟】
- 视频:4-1 假设检验 (08:05)
- 视频:4-2 卡方检验 (02:21)
- 视频:4-3 方差检验 (03:43)
- 视频:4-4 相关系数 (03:33)
- 视频:4-5 线性回归 (02:48)
- 视频:4-6 主成分分析 (05:20)
- 视频:4-7 编码实现 (19:21)
- 视频:4-8 交叉分析方法与实现 (13:48)
- 视频:4-9 分组分析方法与实现 (08:45)
- 视频:4-10 相关分析与实现 (22:42)
- 视频:4-11 因子分析与实现 (06:42)
- 视频:4-12 本章小结 (02:02)
- 第5章预处理理论 【15 节 | 122分钟】
- 视频:5-1 特征工程概述 (09:59)
- 视频:5-2 数据样本采集 (02:42)
- 视频:5-3 异常值处理 (12:45)
- 视频:5-4 标注 (02:58)
- 视频:5-5 特征选择 (17:18)
- 视频:5-6 特征变换-对指化 (04:23)
- 视频:5-7 特征变换-离散化 (07:13)
- 视频:5-8 特征变换-归一化与标准化 (07:06)
- 视频:5-9 特征变换-数值化 (10:09)
- 视频:5-10 特征变换-正规化 (04:49)
- 视频:5-11 特征降维-LDA (11:32)
- 视频:5-12 特征衍生 (03:04)
- 视频:5-13 HR表的特征预处理-1 (15:29)
- 视频:5-14 HR表的特征预处理-2 (08:35)
- 视频:5-15 本章小结 (02:53)
- 第6章挖掘建模 【22 节 | 298分钟】
- 视频:6-1 机器学习与数据建模 (05:17)
- 视频:6-2 训练集、验证集、测试集 (07:02)
- 视频:6-5 分类-决策树 (23:42)
- 视频:6-6 分类-支持向量机 (20:41)
- 视频:6-7 分类-集成-随机森林 (19:24)
- 视频:6-8 分类-集成-Adaboost (10:47)
- 视频:6-9 回归-线性回归 (23:36)
- 视频:6-10 回归-分类-逻辑回归 (11:12)
- 视频:6-11 回归-分类-人工神经网络-1 (16:26)
- 视频:6-12 回归-分类-人工神经网络-2 (15:47)
- 视频:6-13 回归-回归树与提升树 (09:59)
- 视频:6-14 聚类-Kmeans-1 (10:37)
- 视频:6-15 聚类-Kmeans-2 (10:54)
- 视频:6-16 聚类-DBSCAN (10:33)
- 视频:6-17 聚类-层次聚类 (04:40)
- 视频:6-18 聚类-图分裂 (03:54)
- 视频:6-19 关联-关联规则-1 (13:56)
- 视频:6-20 关联-关联规则-2 (13:39)
- 视频:6-21 半监督-标签传播算法 (17:18)
- 视频:6-22 本章小结 (05:50)
- 第7章模型评估 【4 节 | 43分钟】
- 视频:7-1 分类评估-混淆矩阵 (14:51)
- 视频:7-2 分类评估-ROC、AUC、提升图与KS图 (15:12)
- 视频:7-3 回归评估 (05:02)
- 视频:7-4 非监督评估 (07:49)
- 第8章总结与展望 【2 节 | 13分钟】
- 视频:8-1 课程回顾与多角度看数据分析 (05:22)
- 视频:8-2 大数据与学习这门课后还能干什么?.mp4 (07:12)
© 版权声明
THE END
暂无评论内容