PS 本站不保证资源的完整性,不对其真实性负责。请自行确认是否符合个人需求。如有介意,请勿获取。
- 第1章人工智能时代,人人都应该学会利用AI这个工具 【6 节 | 125分钟】
- 视频:1-3 人工智能介绍 (19:33)
- 视频:1-4 环境及工具包介绍 (17:38)
- 视频:1-6 Pandas、Numpy、Matplotlib实操 (23:21)
- 第2章机器学习之线性回归 【6 节 | 100分钟】
- 视频:2-1 机器学习介绍 (17:42)
- 视频:2-2 线性回归 (25:47)
- 视频:2-3 线性回归实战准备 (13:34)
- 视频:2-4 单因子线性回归实战 (17:18)
- 视频:2-5 多因子线性回归实战 (25:29)
- 作业:2-6 【讨论题】关于房价预测得思考
- 第3章机器学习之逻辑回归 【9 节 | 112分钟】
- 视频:3-1 分类问题介绍 (16:40)
- 视频:3-2 逻辑回归(1) (14:54)
- 视频:3-3 逻辑回归(2) (14:30)
- 视频:3-4 实战准备 (13:31)
- 视频:3-5 考试通过实战(一) (19:49)
- 视频:3-6 考试通过实战(二) (16:01)
- 视频:3-7 芯片检测实战 (16:30)
- 作业:3-8 【学习任务】商业异常消费数据预测
- 作业:3-9 【讨论】关于分类模型搭建得思考
- 第4章机器学习之聚类 【8 节 | 88分钟】
- 视频:4-1 无监督学习 (18:37)
- 视频:4-2 Kmeans-KNN-Meanshift (19:01)
- 视频:4-3 实战准备 (09:19)
- 视频:4-4 Kmeans实战(1) (12:34)
- 视频:4-5 Kmeans实战(2) (11:31)
- 视频:4-6 KNN-Meanshift (16:51)
- 作业:4-7 【学习任务】KMeans实现数据聚类
- 作业:4-8 【讨论题】关于无监督学习得思考
- 第5章机器学习其他常用技术 【10 节 | 139分钟】
- 视频:5-1 决策树(1) (13:22)
- 视频:5-2 决策树(2) (14:48)
- 视频:5-3 异常检测 (15:36)
- 视频:5-4 主成分分析 (17:18)
- 视频:5-5 实战准备 (22:19)
- 视频:5-6 实战(1) (17:06)
- 视频:5-7 实战(2) (14:49)
- 视频:5-8 实战(3) (23:32)
- 作业:5-9 【学习任务】决策树判断员工是否适合相关工作
- 作业:5-10 【讨论题】关于分类问题得思考
- 第6章模型评价与优化 【8 节 | 140分钟】
- 视频:6-1 过拟合与欠拟合 (18:37)
- 视频:6-2 数据分离与混淆矩阵 (21:37)
- 视频:6-3 模型优化 (21:09)
- 视频:6-4 实战准备 (13:43)
- 视频:6-5 实战(一) (24:53)
- 视频:6-6 实战(二) (15:05)
- 视频:6-7 实战(三) (24:20)
- 作业:6-8 【讨论题】关于分类任务得思考
- 第7章深度学习之多层感知器 【7 节 | 100分钟】
- 视频:7-1 多层感知器(MLP) (18:18)
- 视频:7-2 MLP实现非线性分类 (19:45)
- 视频:7-3 实战准备 (18:57)
- 视频:7-4 实战(一) (23:24)
- 视频:7-5 实战(二) (18:46)
- 作业:7-6 【学习任务】Fashion_mnist服饰分类
- 作业:7-7 【讨论题】逻辑回归模型与神经网络模型的关系
- 第8章深度学习之卷积神经网络 【6 节 | 123分钟】
- 视频:8-1 卷积神经网络(一) (30:03)
- 视频:8-2 卷积神经网络(二) (26:16)
- 视频:8-3 实战准备 (15:18)
- 视频:8-4 实战(一) (24:17)
- 视频:8-5 实战(二) (26:20)
- 作业:8-6 【讨论题】基础的CNN模型设计
- 第9章深度学习之循环神经网络 【10 节 | 126分钟】
- 视频:9-1 序列数据案例 (11:41)
- 视频:9-2 循环神经网络RNN (16:06)
- 视频:9-3 不同类型的RNN模型 (17:36)
- 视频:9-4 实战准备 (15:25)
- 视频:9-5 实战(一)RNN股价预测 (20:49)
- 视频:9-6 实战(二)RNN股价预测 (12:40)
- 视频:9-7 实战(一)LSTM实现文本生成 (22:08)
- 视频:9-8 实战(二)LSTM实现文本生成 (09:00)
- 作业:9-9 【学习任务】贵州茅台股价预测
- 作业:9-10 【讨论题】关于股票预测得思考
- 第10章迁移混合模型 【12 节 | 183分钟】
- 视频:10-1 迁移学习(一) (12:59)
- 视频:10-2 迁移学习(二) (08:48)
- 视频:10-3 在线学习 (07:41)
- 视频:10-4 混合模型1 (15:09)
- 视频:10-5 混合模型2 (13:25)
- 视频:10-6 实战准备(一) (14:36)
- 视频:10-7 实战准备(二) (14:05)
- 视频:10-8 基于新数据的迁移学习实战 (24:05)
- 视频:10-9 机器+深度学习实现少样本苹果分类(一) (25:10)
- 视频:10-10 机器+深度学习实现少样本苹果分类(二) (16:23)
- 视频:10-11 机器+深度学习实现少样本苹果分类(三) (17:10)
- 视频:10-12 机器+深度学习实现少样本苹果分类(四) (13:23)
- 第11章课程总结 【3 节 | 59分钟】
- 视频:11-1 课程总结(一) (19:52)
- 视频:11-2 课程总结(二) (15:41)
- 视频:11-3 课程总结(三) (23:16)
© 版权声明
THE END
暂无评论内容